Vandetanib (Zactima, ZD6474) Antagonizes ABCC1- and ABCG2-Mediated Multidrug Resistance by Inhibition of Their Transport Function
نویسندگان
چکیده
BACKGROUND ABCC1 and ABCG2 are ubiquitous ATP-binding cassette transmembrane proteins that play an important role in multidrug resistance (MDR). In this study, we evaluated the possible interaction of vandetanib, an orally administered drug inhibiting multiple receptor tyrosine kinases, with ABCC1 and ABCG2 in vitro. METHODOLOGY AND PRINCIPAL FINDINGS MDR cancer cells overexpressing ABCC1 or ABCG2 and their sensitive parental cell lines were used. MTT assay showed that vandetanib had moderate and almost equal-potent anti-proliferative activity in both sensitive parental and MDR cancer cells. Concomitant treatment of MDR cells with vandetanib and specific inhibitors of ABCC1 or ABCG2 did not alter their sensitivity to the former drug. On the other hand, clinically attainable but non-toxic doses of vandetanib were found to significantly enhance the sensitivity of MDR cancer cells to ABCC1 or ABCG2 substrate antitumor drugs. Flow cytometric analysis showed that vandetanib treatment significantly increase the intracellular accumulation of doxorubicin and rhodamine 123, substrates of ABCC1 and ABCG2 respectively, in a dose-dependent manner (P<0.05). However, no significant effect was shown in sensitive parental cell lines. Reverse transcription-PCR and Western blot analysis showed that vandetanib did not change the expression of ABCC1 and ABCG2 at both mRNA and protein levels. Furthermore, total and phosphorylated forms of AKT and ERK1/2 remained unchanged after vandetanib treatment in both sensitive and MDR cancer cells. CONCLUSIONS Vandetanib is unlikely to be a substrate of ABCC1 or ABCG2. It overcomes ABCC1- and ABCG2-mediated drug resistance by inhibiting the transporter activity, independent of the blockade of AKT and ERK1/2 signal transduction pathways.
منابع مشابه
Inhibition of Vascular Endothelial Growth Factor eptor and Epidermal Growth Factor Receptor is ffective Chemopreventive Strategy in the Mouse
wnloade pite recent therapeutic advances, several factors, including field cancerization, have limited improvein long-term survival for oral squamous cell carcinoma (OSCC). Therefore, comprehensive treatment must include improved chemopreventive strategies. Using the 4-nitroquinoline 1-oxide (4-NQO) e model, we tested the hypothesis that ZD6474 (Vandetanib, ZACTIMA) is an effective chemoprevene...
متن کاملIdentification of tyrosine 806 as a molecular determinant of RET kinase sensitivity to ZD6474.
ZD6474 (vandetanib, Zactima, Astra Zeneca) is an anilinoquinazoline used to target the receptor tyrosine kinase RET in familial and sporadic thyroid carcinoma (IC(50): 100 nM). The aim of this study was to identify molecular determinants of RET sensitivity to ZD6474. Here, we show that mutation of RET tyrosine 806 to cysteine (Y806C) induced RET kinase resistance to ZD6474 (IC(50): 933 nM). Y80...
متن کاملAxitinib targeted cancer stemlike cells to enhance efficacy of chemotherapeutic drugs via inhibiting the drug transport function of ABCG2.
Stemlike cells have been isolated by their ability to efflux Hoechst 33342 dye and are called the side population (SP). We evaluated the effect of axitinib on targeting cancer stemlike cells and enhancing the efficacy of chemotherapeutical agents. We found that axitinib enhanced the cytotoxicity of topotecan and mitoxantrone in SP cells sorted from human lung cancer A549 cells and increased cel...
متن کاملA Novel Two Mode-Acting Inhibitor of ABCG2-Mediated Multidrug Transport and Resistance in Cancer Chemotherapy
BACKGROUND Multidrug resistance (MDR) is a major problem in successful treatment of cancers. Human ABCG2, a member of the ATP-binding cassette transporter superfamily, plays a key role in MDR and an important role in protecting cancer stem cells. Knockout of ABCG2 had no apparent adverse effect on the mice. Thus, ABCG2 is an ideal target for development of chemo-sensitizing agents for better tr...
متن کاملMasitinib antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance
In this in vitro study, we determined whether masitinib could reverse multidrug resistance (MDR) in cells overexpressing the ATP binding cassette subfamily G member 2 (ABCG2) transporter. Masitinib (1.25 and 2.5 µM) significantly decreases the resistance to mitoxantrone (MX), SN38 and doxorubicin in HEK293 and H460 cells overexpressing the ABCG2 transporter. In addition, masitinib (2.5 µM) sign...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009